

Welcome to Relé’s documentation!

Release v1.13.0. (Installation [https://github.com/mercadona/rele])

[image: _images/rele.svg]
 [https://travis-ci.org/mercadona/rele][image: _images/license-Apache%202-blue.svg]
 [https://github.com/mercadona/rele/blob/master/LICENSE]

Relé makes integration with Google PubSub easier and is ready to
integrate seamlessly into any Django project.

The Publish-Subscribe pattern and specifically the Google Cloud Pub/Sub library are
very powerful tools but you can easily cut your fingers on it. Relé
makes integration seamless by providing Publisher, Subscriber and Worker
classes.

Features

Out of the box, Relé includes the following features:

	Powerful Publishing API

	Highly Scalable Worker

	Intuitive Subscription Management

	Easily Extensible Middleware

	Ready to go Django/Flask integration

	CLI

	And much more…

What It Looks Like

Subscribe to the Pub/Sub topic
from rele import sub
@sub(topic='photo-uploaded')
def photo_uploaded(data, **kwargs):
 print(f"Customer {data['customer_id']} has uploaded an image")

Publish to the topic
import rele
rele.publish(topic='photo-uploaded', data={'customer_id': 123})

Install

Relé supports Python 3.6+ and installing via pip

$ pip install rele

or with Django integration

$ pip install rele[django,flask]

User Guides

	First Steps

	Django Integration

	Flask Integration

	Filtering Messages

	Pub/Sub Emulator

	Unrecoverable Middleware

Configuration

Here you can see the full list of the settings options for your deployment of Relé.

	Settings
	RELE

	GC_PROJECT_ID

	GC_CREDENTIALS_PATH

	MIDDLEWARE

	SUB_PREFIX

	APP_NAME

	ENCODER_PATH

	ACK_DEADLINE

	PUBLISHER_BLOCKING

	PUBLISHER_TIMEOUT

	THREADS_PER_SUBSCRIPTION

	FILTER_SUBS_BY

	DEFAULT_RETRY_POLICY

	GC_STORAGE_REGION

API Docs

This is the part of documentation that details the inner workings of Relé.
If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API Reference
	Clients

	Publish

	Subscription

	Worker

	Middleware

	Base Middleware

	Logging Middleware

	Django Middleware

Changelog

Here you can see the full list of changes between each Relé release.

	Changelog

Project Info

	 Source Code [https://github.com/mercadona/rele]

	 Contributing [https://github.com/mercadona/rele/blob/master/CONTRIBUTING.md]

	 Code of Conduct [https://github.com/mercadona/rele/blob/master/CODE_OF_CONDUCT.md]

	 License [https://github.com/mercadona/rele/blob/master/LICENSE]

Indices and tables

	Index

	Module Index

	Search Page

First Steps

Configuration

In order to get started using Relé, we must have a PubSub topic in which to publish.
Via the Google Cloud Console [https://cloud.google.com/pubsub/docs/quickstart-console]
we create one, named photo-upload.

To authenticate our publisher and subscriber, follow the
Google guide [https://cloud.google.com/pubsub/docs/authentication] on
how to obtain your authentication account.

Publishing

To configure Relé, our settings may look something like:

/settings.py

RELE = {
 'GC_CREDENTIALS_PATH': 'credentials.json',
}

/publisher.py

import rele
import settings # we need this for initializing the global Publisher singleton

config = rele.config.setup(settings.RELE)
data = {
 'customer_id': 123,
 'location': '/google-bucket/photos/123.jpg'
}

rele.publish(topic='photo-uploaded', data=data)

To publish data, we simply pass in the topic to which we want our data to be published to, followed by
a valid json serializable Python object.

Note

If you want to publish other types of objects, you may configure a custom ENCODER_PATH.

If you need to pass in additional attributes to the Message object, you can simply add kwargs.
These must all be strings:

rele.publish(topic='photo-uploaded',
 data=data,
 type='profile',
 rotation='landscape')

Note

Anything other than a string attribute will result in a TypeError.

Subscribing

Once we can publish to a topic, we can subscribe to the topic from a worker instance.
In an app directory, we create our sub function within our subs.py file.

/app/subs.py

from rele import sub

@sub(topic='photo-uploaded')
def photo_uploaded(data, **kwargs):
 print(f"Customer {data['customer_id']} has uploaded an image to our service,
 and we stored it at {data['location'}.")

Additionally, if you added message attributes to your Message, you can access them via the
kwargs argument:

@sub(topic='photo-uploaded')
def photo_uploaded(data, **kwargs):
 print(f"Customer {data['customer_id']} has uploaded an image to our service,
 and we stored it at {data['location'}.
 It is a {kwargs['type']} picture with the
 rotation {kwargs['rotation']}")

Message attributes

It might be helpful to access particular message attributes in your
subscriber. One attribute that _rele_ adds by default is published_at.
To access this attribute you can use kwargs.

@sub(topic='photo-uploaded')
def photo_uploaded(data, **kwargs):
 print(f"Customer {data['customer_id']} has uploaded an image to our service,
 and it was published at {kwargs['published_at'}.")

Consuming

Once the sub is implemented, we can start our worker which will register the subscriber on the topic
with Google Cloud and will begin to pull the messages from the topic.

rele-cli run

In addition, if the settings.py module is not in the current directory, we can specify the
path.

rele-cli run --settings app.settings

Note

Autodiscovery of subscribers with rele-cli is automatic.
Any subs.py module you have in your current path, will be imported, and all subsequent decorated objects will be registered.

├──settings.py

├──app # This can be called whatever you like

├────subs.py

In another terminal session when we run python publisher.py, we should see the print readout in our subscriber.

Django Integration

Note

This guide simply points out the differences between standalone Relé and
the Django integration. The basics about publishing and subscribing are described
in the First Steps section.

Publishing

To configure Relé, our settings may look something like:

RELE = {
 'GC_CREDENTIALS_PATH': 'photo_project/settings/dummy-credentials.json',
 'MIDDLEWARE': [
 'rele.contrib.LoggingMiddleware',
 'rele.contrib.DjangoDBMiddleware',
],
 'APP_NAME': 'photo-imaging',
}

The only major difference here is that we are using the rele.contrib.DjangoDBMiddleware.
This is important to properly close DB connections.

Important

If you plan on having your subscriber connect to the database, it is vital that
the Django settings.CONN_MAX_AGE is set to 0.

Once the topic is created and our Django application has the proper configuration defined
in Settings, we can start publishing to that topic.

Subscribing

Since the Django integration comes with python manage.py runrele command, we must name the file
where we define our subscribers subs.py. runrele will auto-discover all decorated
subscriber methods in a defined Django app and register/create the subscriptions for us.

Subscribing follows the same method as before.

Consuming

Unlike what is described in Consuming, the Django integration provides a very convenient
command.

By running python manage.py runrele, worker process will autodiscover any properly decorated @sub
function in the subs.py file and create the subscription for us.

Once the process is up and running, we can publish and consume.

Flask Integration

Note

This guide simply points out the differences between standalone Relé and
the Flask integration. The basics about publishing and consuming are described
in the First Steps section.

Setup

To configure Relé, our settings may look something like:

RELE = {
 'GC_CREDENTIALS_PATH': 'photo_project/settings/dummy-credentials.json',
 'MIDDLEWARE': [
 'rele.contrib.LoggingMiddleware',
 'rele.contrib.FlaskMiddleware',
],
 'APP_NAME': 'photo-imaging',
}

Later when we setup rele and flask:
app = Flask()
rele.config.setup(RELE, flask_app=app)

The only major difference here is that we are using the rele.contrib.FlaskMiddleware and
that we pass the Flask app instance to rele.config.setup method.

Subscribing

Now that that the middleware is setup our subscriptions will automatically have
Flask’s app context [https://flask.palletsprojects.com/en/1.0.x/appcontext/] pushed
when they are invoked so you will have access to the database connection pool and all
other app dependent utilities.

from models import File
from database import db

@sub(topic='photo-uploads')
def handle_upload(data, **kwargs):
 new_file = File(data)
 db.session.add(new_file)
 db.session.commit()

Filtering Messages

Filter can be used to execute a subscription with specific parameters.
There are three types of filters, global, by passing a filter_by parameter in the
subscription (this applies the filter locally) or by passing a backend_filter_by
parameter in the subscription (this applies the filter on pubsub).

filter_by parameter

This filter is a function that is supposed to return a boolean and this function
is passed as parameter filter_by in the subscription.

def landscape_filter(kwargs):
 return kwargs.get('type') == 'landscape'

This subscription is going to be called if in the kwargs
has a key type with value landscape

@sub(topic='photo-updated', filter_by=landscape_filter)
def sub_process_landscape_photos(data, **kwargs):
 print(f'Received a photo of type {kwargs.get("type")}')

backend_filter_by parameter

This filter is an expression that is applied to the subscription creation. This filter
expression is applied by pubsub before passing the message to the subscriber. More info
about filter expressions here [https://cloud.google.com/pubsub/docs/filtering#filtering_syntax].

Note

Filter expressions are only applied on the subscription creation, they are not updated
if changed if you do not recreate the subscription on pubsub.

This subscription is going to be called if in the kwargs
has a key type with value landscape

@sub(topic='photo-updated', backend_filter_by='attributes:type = "landscape"')
def sub_process_landscape_photos(data, **kwargs):
 print(f'Received a photo of type {kwargs.get("type")}')

Global Filter

This filter is specified in the settings with the key FILTER_SUBS_BY
that has a function as value.
In case a subscription has a filter already it’s going to use it’s own filter.

import os

def landscape_filter(kwargs):
 return kwargs.get('type') == 'landscape'

settings = {
 ...
 'FILTER_SUBS_BY': landscape_filter,
}

Pub/Sub Emulator

It can be helpful to be able run the emulator in our development environment.
To be able to do that we can follow the steps below:

	Run the Google Cloud Pub/Sub emulator in the cloud-sdk container and map the port 8085.

$ docker pull google/cloud-sdk # Pull container
$ docker run -it --rm -p "8085:8085" google/cloud-sdk gcloud beta emulators pubsub start --host-port=0.0.0.0:8085

	Export PUBSUB_EMULATOR_HOST environment variable to specify the emulator host.

In case you don’t want to set this variable, it will be necessary to have pub/sub credentials.

$ export PUBSUB_EMULATOR_HOST=localhost:8085

	Set rele settings in the Django project.

my_django_project/settings.py

RELE = {
 'APP_NAME': 'my-awesome-app',
 'SUB_PREFIX': 'test',
 'GC_CREDENTIALS_PATH': 'my-credentials',
 'MIDDLEWARE': [
 'rele.contrib.LoggingMiddleware',
 'rele.contrib.DjangoDBMiddleware',
],
}

In case it’s necessary to create a topic manually we can add it using the django shell.

python manage.py shell

from django.conf import settings
from google.cloud import pubsub_v1

publisher_client = pubsub_v1.PublisherClient()
topic_path = publisher_client.topic_path(settings.RELE.get('GC_PROJECT_ID'), 'topic_name')
publisher_client.create_topic(topic_path)

Unrecoverable Middleware

To acknowledge and ignore incompatible messages that your subscription is unable to handle, you can use the UnrecoverableMiddleware.

Usage

First make sure the middleware is included in your Relé config.

settings.py
import rele
from google.oauth2 import service_account

RELE = {
 'GC_CREDENTIALSGC_CREDENTIALS_PATH': 'credentials.json',
 'MIDDLEWARE': ['rele.contrib.UnrecoverableMiddleWare']
}
config = rele.config.setup(RELE)

Then in your subscription handler if you encounter an incompatible message raise the UnrecoverableException. Your message will be .acked() and it will not be redelivered to your subscription.

from rele.contrib.unrecoverable_middleware import UnrecoverableException
from rele import sub

@sub(topic='photo-uploaded')
def photo_uploaded(data, **kwargs):

 if data.get("required_property") is None:
 # Incompatible
 raise UnrecoverableException("required_property is required.")

 # Handle correct messages

Settings

	RELE

	GC_PROJECT_ID

	GC_CREDENTIALS_PATH

	MIDDLEWARE

	SUB_PREFIX

	APP_NAME

	ENCODER_PATH

	ACK_DEADLINE

	PUBLISHER_BLOCKING

	PUBLISHER_TIMEOUT

	THREADS_PER_SUBSCRIPTION

	FILTER_SUBS_BY

	DEFAULT_RETRY_POLICY

	GC_STORAGE_REGION

RELE

Default: {} (Empty dictionary)

A dictionary mapping all Relé configuration settings to values defined
in your Django project’s settings.py.
Example:

RELE = {
 'GC_CREDENTIALS_PATH': 'rele/settings/dummy-credentials.json',
 'MIDDLEWARE': [
 'rele.contrib.LoggingMiddleware',
 'rele.contrib.DjangoDBMiddleware',
],
 'SUB_PREFIX': 'mysubprefix',
 'APP_NAME': 'myappname',
 'ENCODER_PATH': 'rest_framework.utils.encoders.JSONEncoder',
 'ACK_DEADLINE': 120,
 'PUBLISHER_TIMEOUT': 3.0,
 'FILTER_SUBS_BY': boolean_function,
 'DEFAULT_RETRY_POLICY': RetryPolicy(10, 50),
 'GC_STORAGE_REGION': 'europe-west1',
}

GC_PROJECT_ID

Optional

GCP project id to use. If this is not provided then it is inferred via either
service account’s project id or quota project id if using Application Default Credentials (ADC)

GC_CREDENTIALS_PATH

Optional

Path to service account json file with access to PubSub

MIDDLEWARE

Optional

Default: ['rele.contrib.LoggingMiddleware']

List of the middleware modules that will be included in the project. The order
of execution follows FIFO.

It is strongly recommended that for Django integration, you add:

[
 'rele.contrib.LoggingMiddleware',
 'rele.contrib.DjangoDBMiddleware',
]

The DjangoDBMiddleware will take care of opening and closing connections to the db before
and after your callbacks are executed. If this is left out, it is highly probable that
your database will run out of connections in your connection pool.

The LoggingMiddleware will take care of logging subscription information before and after the callback is executed.
The subscription message is only logged when an exception was raised while processing it.
If you would like to log this message in every case, you should create a middleware of your own.

SUB_PREFIX

Optional

A prefix to all your subs that can be declared globally.

For instance, if you have two projects listening to one topic, you may want to add a
prefix so that there can be two distinct subscribers to that one topic.

APP_NAME

Optional

The application name.

This should be unique to all the services running in the application ecosystem. It is used by
the LoggingMiddleware and Prometheus integration.

ENCODER_PATH

Optional

Default: rest_framework.utils.encoders.JSONEncoder [https://github.com/encode/django-rest-framework/blob/master/rest_framework/utils/encoders.py#L17]

Encoder class path [https://docs.python.org/3/library/json.html#json.JSONEncoder] to use for
serializing your Python data structure to a json object when publishing.

Note

The default encoder class is subject to change in an upcoming release.
It is advised that you use this setting explicitly.

ACK_DEADLINE

Optional

Ack deadline for all subscribers in seconds.

See also

The Google Pub/Sub documentation [https://cloud.google.com/pubsub/docs/subscriber]
which states that The subscriber has a configurable, limited amount of time –
known as the ackDeadline – to acknowledge the outstanding message. Once the deadline
passes, the message is no longer considered outstanding, and Cloud Pub/Sub will attempt
to redeliver the message.

PUBLISHER_BLOCKING

Optional

Default: False

Wait synchronously for the publishing result

See Google PubSub documentation for more info [https://googleapis.dev/python/pubsub/1.1.0/publisher/api/futures.html?highlight=result#google.cloud.pubsub_v1.publisher.futures.Future.result]

PUBLISHER_TIMEOUT

Optional

Default: 3.0 seconds

Timeout that the publishing result will wait on the future to publish successfully while blocking.

See Google PubSub documentation for more info [https://googleapis.dev/python/pubsub/1.1.0/publisher/api/futures.html?highlight=result#google.cloud.pubsub_v1.publisher.futures.Future.result]

THREADS_PER_SUBSCRIPTION

Optional

Default: 2

Number of threads that will be consumed for each subscription.
Default behavior of the Google Cloud PubSub library is to use 10 threads per subscription.
We thought this was too much for a default setting and have taken the liberty of
reducing the thread count to 2. If you would like to maintain the default Google PubSub
library behavior, please set this value to 10.

FILTER_SUBS_BY

Optional

Boolean function that applies a global filter on all subscriptions.
For more information, please see Filtering Messages section [https://mercadonarele.readthedocs.io/en/latest/guides/filters.html#global-filter].

DEFAULT_RETRY_POLICY

Optional

A RetryPolicy object which must be instantiated with minimum_backoff and maximum_backoff, that specifies in seconds how Pub/Sub retries message delivery for all the subscriptions.

If not set, the default retry policy is applied, meaning a minimum backoff of 10 seconds and a maximum backoff of 60 seconds.
This generally implies that messages will be retried as soon as possible for healthy subscribers.
RetryPolicy will be triggered on NACKs or acknowledgement deadline exceeded events for a given message.

GC_STORAGE_REGION

Optional

Set the Google Cloud’s region for storing the messages. By default is europe-west1

API Reference

Clients

	
class rele.client.Publisher(gc_project_id, credentials, encoder, timeout, blocking=None)

	The Publisher Class

Wraps the Google Cloud Publisher Client and handles encoding of the data.

It is important that this class remains a Singleton class in the process.
Otherwise, a memory leak will occur. To avoid this, it is strongly
recommended to use the publish() method.

If the setting USE_EMULATOR evaluates to True, the Publisher Client will
not have any credentials assigned.

	Parameters

	
	gc_project_id – string Google Cloud Project ID.

	credentials – string Google Cloud Credentials.

	encoder – A valid json.encoder.JSONEncoder subclass [https://docs.python.org/3/library/json.html#json.JSONEncoder] # noqa

	timeout – float, default PUBLISHER_TIMEOUT

	blocking – boolean, default None falls back to PUBLISHER_BLOCKING

	
publish(topic, data, blocking=None, timeout=None, raise_exception=True, **attrs)

	Publishes message to Google PubSub topic.

Usage:

publisher = Publisher()
publisher.publish('topic_name', {'foo': 'bar'})

By default, this method is non-blocking, meaning that the method does
not wait for the future to be returned.

If you would like to wait for the future so you can track the message
later, you can:

Usage:

publisher = Publisher()
future = publisher.publish('topic_name', {'foo': 'bar'}, blocking=True, timeout=10.0) # noqa

However, it should be noted that using blocking=True may incur a
significant performance hit.

In addition, the method adds a timestamp published_at to the
message attrs using epoch floating point number [https://docs.python.org/3/library/time.html#time.time].

	Parameters

	
	topic – string topic to publish the data.

	data – dict with the content of the message.

	blocking – boolean, default None falls back to PUBLISHER_BLOCKING

	timeout – float, default None falls back to PUBLISHER_TIMEOUT

	raise_exception – boolean. If True, exceptions coming from PubSub will be raised

	attrs – additional string parameters to be published.

	Returns

	Future [https://googleapis.github.io/google-cloud-python/latest/pubsub/subscriber/api/futures.html] # noqa

	
class rele.client.Subscriber(gc_project_id, credentials, message_storage_policy, default_ack_deadline=None, default_retry_policy=None)

	The Subscriber Class.

For convenience, this class wraps the creation and consumption of a topic
subscription.

	Parameters

	
	gc_project_id – str MIDDLEWARE .

	credentials – obj credentials().

	message_storage_policy – str Region to store the messages

	default_ack_deadline – int Ack Deadline defined in settings

	default_retry_policy – RetryPolicy Rele’s RetryPolicy defined in settings

	
consume(subscription_name, callback, scheduler)

	Begin listening to topic from the SubscriberClient.

	Parameters

	
	subscription_name – str Subscription name

	callback – Function which act on a topic message

	scheduler – Thread pool-based scheduler. [https://googleapis.dev/python/pubsub/latest/subscriber/api/scheduler.html?highlight=threadscheduler#google.cloud.pubsub_v1.subscriber.scheduler.ThreadScheduler] # noqa

	Returns

	Future [https://googleapis.github.io/google-cloud-python/latest/pubsub/subscriber/api/futures.html] # noqa

	
update_or_create_subscription(subscription)

	Handles creating the subscription when it does not exists or updates it
if the subscription contains any parameter that allows it.

This makes it easier to deploy a worker and forget about the
subscription side of things. The subscription must
have a topic to subscribe to. Which means that the topic must be
created manually before the worker is started.

	Parameters

	subscription – obj Subscription.

Publish

	
rele.publishing.publish(topic, data, **kwargs)

	Shortcut method to publishing data to PubSub.

This is a shortcut method that instantiates the Publisher if not already
instantiated in the process. This is to ensure that the Publisher remains a
Singleton class.

Usage:

import rele

def myfunc():
 # ...
 rele.publish(topic='lets-tell-everyone',
 data={'foo': 'bar'},
 myevent='arrival')

	Parameters

	
	topic – str PubSub topic name

	data – dict-like Data to be sent as the message.

	timeout – float. Default None, falls back to RELE[‘PUBLISHER_TIMEOUT’] value

	blocking – boolean. Default False

	kwargs – Any optional key-value pairs that are included as attributes
in the message

	Returns

	None

Subscription

	
class rele.subscription.Subscription(func, topic, prefix='', suffix='', filter_by=None, backend_filter_by=None, retry_policy=None)

	The Subscription class

In addition to using the @sub decorator, it is possible to subclass
the Subscription.

For example:

from rele import Subscription

class DoSomethingSub(Subscription):
 topic = 'photo-uploaded'

 def __init__(self):
 self._func = self.callback_func
 super().__init__(self._func, self.topic)

 def callback_func(self, data, **kwargs):
 print(data["id"])

If rele-cli run is used, the DoSomethingSub will be a valid subscription
and registered on Google Cloud.

	
rele.subscription.sub(topic, prefix=None, suffix=None, filter_by=None, backend_filter_by=None, retry_policy=None)

	Decorator function that makes declaring a PubSub Subscription simple.

The Subscriber returned will automatically create and name
the subscription for the topic.
The subscription name will be the topic name prefixed by the project name.

For example, if the topic name to subscribe too is lets-tell-everyone,
the subscriber will be named project-name-lets-tell-everyone.

Additionally, if a suffix param is added, the subscriber will be
project-name-lets-tell-everyone-my-suffix.

It is recommended to add **kwargs to your sub function. This will allow
message attributes to be sent without breaking the subscriber
implementation.

Usage:

@sub(topic='lets-tell-to-alice', prefix='shop')
def bob_purpose(data, **kwargs):
 pass

@sub(topic='lets-tell-everyone', suffix='sub1')
def purpose_1(data, **kwargs):
 pass

@sub(topic='lets-tell-everyone', suffix='sub2')
def purpose_2(data, **kwargs):
 pass

@sub(topic='photo-updated',
 filter_by=lambda **attrs: attrs.get('type') == 'landscape')
def sub_process_landscape_photos(data, **kwargs):
 pass

	Parameters

	
	topic – string The topic that is being subscribed to.

	prefix – string An optional prefix to the subscription name.
Useful to namespace your subscription with your project name

	suffix – string An optional suffix to the subscription name.
Useful when you have two subscribers in the same project
that are subscribed to the same topic.

	filter_by – Union[function, list] An optional function or tuple of
functions that filters the messages to be processed by
the sub regarding their attributes.

	retry_policy – obj RetryPolicy

	Returns

	Subscription

Worker

	
class rele.worker.Worker(subscriptions, gc_project_id=None, credentials=None, gc_storage_region=None, default_ack_deadline=None, threads_per_subscription=None, default_retry_policy=None)

	A Worker manages the subscriptions which consume Google PubSub messages.

Facilitates the creation of subscriptions if not already created,
and the starting and stopping the consumption of them.

	Parameters

	subscriptions – list Subscription

	
run_forever(sleep_interval=1)

	Shortcut for calling setup, start, and _wait_forever.

	Parameters

	sleep_interval – Number of seconds to sleep in the while True loop

	
setup()

	Create the subscriptions on a Google PubSub topic.

If the subscription already exists, the subscription will not be
re-created. Therefore, it is idempotent.

	
start()

	Begin consuming all subscriptions.

When consuming a subscription, a StreamingPullFuture is returned from
the Google PubSub client library. This future can be used to
manage the background stream.

The futures are stored so that they can be cancelled later on
for a graceful shutdown of the worker.

	
stop(signal=None, frame=None)

	Manage the shutdown process of the worker.

This function has two purposes:

	Cancel all the futures created.

	And close all the database connections
opened by Django. Even though we cancel the connections
for every execution of the callback, we want to be sure
that all the database connections are closed
in this process.

Exits with code 0 for a clean exit.

	Parameters

	
	signal – Needed for signal.signal [https://docs.python.org/3/library/signal.html#signal.signal] # noqa

	frame – Needed for signal.signal [https://docs.python.org/3/library/signal.html#signal.signal] # noqa

	
rele.worker.create_and_run(subs, config)

	Create and run a worker from a list of Subscription objects and a config
while waiting forever, until the process is stopped.

We stop a worker process on:
- SIGINT
- SIGTSTP

	Parameters

	
	subs – List Subscription

	config – Config

Middleware

Relé middleware’s provide additional functionality to default behavior. Simply subclass
BaseMiddleware and declare the hooks you wish to use.

Base Middleware

	
class rele.middleware.BaseMiddleware

	Base class for middleware. The default implementations
for all hooks are no-ops and subclasses may implement whatever
subset of hooks they like.

	
post_process_message()

	Called after the Worker processes the message.

	
post_process_message_failure(subscription, exception, start_time, message)

	Called after the message has been unsuccessfully processed.
:param subscription:
:param exception:
:param start_time:
:param message:

	
post_process_message_success(subscription, start_time, message)

	Called after the message has been successfully processed.
:param subscription:
:param start_time:
:param message:

	
post_publish_failure(topic, exception, message)

	Called after publishing fails.
:param topic:
:param exception:
:param message:

	
post_publish_success(topic, data, attrs)

	Called after Publisher succesfully sends message.
:param topic:
:param data:
:param attrs:

	
post_worker_start()

	Called after the Worker process starts up.

	
post_worker_stop()

	Called after the Worker process shuts down.

	
pre_process_message(subscription, message)

	Called when the Worker receives a message.
:param subscription:
:param message:

	
pre_publish(topic, data, attrs)

	Called before Publisher sends message.
:param topic:
:param data:
:param attrs:

	
pre_worker_start()

	Called before the Worker process starts up.

	
pre_worker_stop(subscriptions)

	Called before the Worker process shuts down.

	
setup(config, **kwargs)

	Called when middleware is registered.
:param config: Relé Config object

Logging Middleware

	
class rele.contrib.logging_middleware.LoggingMiddleware

	Default logging middleware.

Logging format has been configured for Prometheus.

	
post_process_message_failure(subscription, exception, start_time, message)

	Called after the message has been unsuccessfully processed.
:param subscription:
:param exception:
:param start_time:
:param message:

	
post_process_message_success(subscription, start_time, message)

	Called after the message has been successfully processed.
:param subscription:
:param start_time:
:param message:

	
post_publish_failure(topic, exception, message)

	Called after publishing fails.
:param topic:
:param exception:
:param message:

	
post_publish_success(topic, data, attrs)

	Called after Publisher succesfully sends message.
:param topic:
:param data:
:param attrs:

	
pre_process_message(subscription, message)

	Called when the Worker receives a message.
:param subscription:
:param message:

	
pre_publish(topic, data, attrs)

	Called before Publisher sends message.
:param topic:
:param data:
:param attrs:

	
pre_worker_stop(subscriptions)

	Called before the Worker process shuts down.

	
setup(config, **kwargs)

	Called when middleware is registered.
:param config: Relé Config object

Django Middleware

Changelog

1.13.0 (2023-09-04)

	[Added] Add verbosity to VerboseLoggingMiddleware’s hooks (#240)

1.12.0 (2023-07-17)

	[Added] Check if subs have same memory address (#257)

	[Changed] Detect subs module at any folder level (#255)

1.11.0 (2023-05-09)

	[Added] Allow updating retry policy to existing subscriptions. (#248)

1.10.0 (2023-05-02)

	[Added] Add configuration for setting the storage region for pubsub messages (#247)

1.9.0 (2023-05-02)

	[Changed] Use custom encoder in logging middleware. (#247)

1.8.0 (2023-04-28)

	[Added] Add retry policy to subscriptions. (#222)

1.7.0 (2022-11-15)

	[Added] Add PUBLISHER_BLOCKING setting

	[Changed] Provide a subscription_message argument of a consistent data type to all hooks

	[Changed] Fix rendering of links in docs

	[Changed] Add improvements for local development

1.6.0 (2022-08-03)

	[Added] Implement auto restart of the consumption when futures are done or cancelled. (#226)

1.5.0 (2022-04-20)

	[Added] Add filter expressions to subscriptions. (#207)

1.4.1 (2022-04-19)

	[Modified] Fixed bug in the post-publish-failure VerboseLoggingMiddleware hook. (#220)

1.4.0 (2022-04-13)

	[Added] Added a VerboseLoggingMiddleware that does not truncate mesage payload. (#218)

1.3.0 (2022-04-04)

	GC Project Id & Windows support (#215)

1.2.0 (2021-12-10)

	[CHANGED] TimeotError from publisher (#212)

	Added filter_subs_by setting in documentation (#208)

	Automatic topic creation (#206)

	Log post publish success (#204)

1.1.1 (2021-6-28)

	Do not define default_app_config, it’s deprecated (#199)

	Do not implement deprecated middlewares in the base class (#200)

1.1.0 (2021-3-10)

	Google Pubsub 2.0 Compat (#192)

	Add validations to the sub decorator (#189)

	Add new post_publish_hook and deprecate the old one (#190)

	Discover and load settings when publishing (#188)

	Fix #180: Raise error when the config loads a repeated subscription (#187)

1.0.0 (2020-9-25)

	BREAKING: Remove GC_PROJECT_ID (#183)

0.14.0 (2020-8-5)

	BREAKING: Remove GC_CREDENTIALS (#174)

	Add changelog to the docs site (#179)

	Catch TimeoutError and run post_publish_failure when blocking (#172)

	Deprecate GC_PROJECT_ID setting (#178)

0.13.0 (2020-7-9)

	Add documentation for class based subscriptions (#169)

	Deprecate GC_CREDENTIALS setting (#173)

	GC_CREDENTIALS_PATH setting option (#170)

0.13.dev0 (2020-6-16)

	Traverse all packages to autodiscover all subs.py modules (#167)

	Auto-discovery of class based subscriptions (#168)

0.12.0 (2020-6-12)

	Added --settings path option in CLI (#166)

	Added isort linting (#164)

0.11.0 (2020-6-4)

	CLI feature (#160)

	Documentation Enhancements (#158, #155, #162)

	Testing Improvements (#154, #157)

0.10.0 (2020-2-4)

	Adjust default THREADS_PER_SUBSCRIPTION (#152)

	Add unrecoverable_middleware (#150)

	Allow multiple filters (#148)

	Configure timeout from .publish() (#143)

	Dont crash when subscription topic does not exist (#142)

0.9.1 (2020-1-2)

	Ack messages when data not json serializable (#141)

	Use ThreadScheduler instead of ThreadPoolExecutor (#145)

0.9.0 (2019-12-20)

	Flask support via middleware (#127)

	Add message attributes to metrics log (#128)

	Specify number of threads per subscriber with Subscription ThreadPoolExecutor (#139)

	Publishing timeout while blocking (#137)

	Clean up rele.config.setup + Worker() init (#132)

0.8.1 (2019-11-25)

	Fix runrele command

0.8.0 (2019-11-22)

	Worker run method (#118)

	Add kwargs to setup method passed through to middleware (#123)

	Add missing worker middleware hooks (#121)

	Add 3.8 support

	More Documentation

0.7.0 (2019-10-21)

	BREAKING: Remove Django as a dependency (#95)

	More documentation

0.6.0 (2019-09-21)

	BREAKING: Remove drf as a dependency (#91)

	Add message as a parameter for middleware hooks (#99)

	Check setting.CONN_MAX_AGE and warn when not 0 (#97)

	More documentation

0.5.0 (2019-08-08)

	python manage.py showsubscriptions command

	Configurable ENCODER setting

	Move DEFAULT_ACK_DEADLINE to the RELE config

	More documentation

0.4.1 (2019-06-18)

	Ability to install app only with rele

	Define default filter_by in settings.RELE

0.4.0 (2019-06-17)

	Set DEFAULT_ACK_DEADLINE (#49)

	Filter by message attributes (#66)

	BREAKING: All Relé settings are defined in a dict (#60)

Old structure:

from google.oauth2 import service_account
RELE_GC_CREDENTIALS = service_account.Credentials.from_service_account_file(
 'rele/settings/dummy-credentials.json'
)
RELE_GC_PROJECT_ID = 'dummy-project-id'

New structure:

from google.oauth2 import service_account
RELE = {
 'GC_CREDENTIALS': service_account.Credentials.from_service_account_file(
 'rele/settings/dummy-credentials.json'
),
 'GC_PROJECT_ID': 'dummy-project-id',
 'MIDDLEWARE': [
 'rele.contrib.LoggingMiddleware',
 'rele.contrib.DjangoDBMiddleware',
],
 'SUB_PREFIX': 'mysubprefix',
 'APP_NAME': 'myappname',
}

	rele.contrib.middleware (#55)

	Prefix argument in sub decorator (#47)

	Add timestamp to the published message (#42)

	BREAKING: Explicit publisher and subscriber configuration (#43)

	Sphinx documentation (#27, #34, #40, #41)

	Contributing guidelines (#32)

0.3.1 (2019-06-04)

	Add prometheus metrics key to logs (#16 - #20, #22, #23)

	Fix JSON serialization when publishing (#25)

0.3.0 (2019-05-14)

	Ability to run in emulator mode (#12)

	Add Travis-CI builds (#10)

	More friendly global publish (#11)

	Non-blocking behaviour when publishing by default (#6)

0.2.0 (2019-05-09)

	Initial version

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rele	

 	
 	
 rele.contrib.logging_middleware	

 	
 	
 rele.publishing	

 	
 	
 rele.subscription	

 	
 	
 rele.worker	

Index

 B
 | C
 | L
 | P
 | R
 | S
 | U
 | W

B

 	
 	BaseMiddleware (class in rele.middleware)

C

 	
 	consume() (rele.client.Subscriber method)

 	
 	create_and_run() (in module rele.worker)

L

 	
 	LoggingMiddleware (class in rele.contrib.logging_middleware)

P

 	
 	post_process_message() (rele.middleware.BaseMiddleware method)

 	post_process_message_failure() (rele.contrib.logging_middleware.LoggingMiddleware method)

 	(rele.middleware.BaseMiddleware method)

 	post_process_message_success() (rele.contrib.logging_middleware.LoggingMiddleware method)

 	(rele.middleware.BaseMiddleware method)

 	post_publish_failure() (rele.contrib.logging_middleware.LoggingMiddleware method)

 	(rele.middleware.BaseMiddleware method)

 	post_publish_success() (rele.contrib.logging_middleware.LoggingMiddleware method)

 	(rele.middleware.BaseMiddleware method)

 	post_worker_start() (rele.middleware.BaseMiddleware method)

 	
 	post_worker_stop() (rele.middleware.BaseMiddleware method)

 	pre_process_message() (rele.contrib.logging_middleware.LoggingMiddleware method)

 	(rele.middleware.BaseMiddleware method)

 	pre_publish() (rele.contrib.logging_middleware.LoggingMiddleware method)

 	(rele.middleware.BaseMiddleware method)

 	pre_worker_start() (rele.middleware.BaseMiddleware method)

 	pre_worker_stop() (rele.contrib.logging_middleware.LoggingMiddleware method)

 	(rele.middleware.BaseMiddleware method)

 	publish() (in module rele.publishing)

 	(rele.client.Publisher method)

 	Publisher (class in rele.client)

R

 	
 	rele (module)

 	rele.contrib.logging_middleware (module)

 	rele.publishing (module)

 	
 	rele.subscription (module)

 	rele.worker (module)

 	run_forever() (rele.worker.Worker method)

S

 	
 	setup() (rele.contrib.logging_middleware.LoggingMiddleware method)

 	(rele.middleware.BaseMiddleware method)

 	(rele.worker.Worker method)

 	start() (rele.worker.Worker method)

 	
 	stop() (rele.worker.Worker method)

 	sub() (in module rele.subscription)

 	Subscriber (class in rele.client)

 	Subscription (class in rele.subscription)

U

 	
 	update_or_create_subscription() (rele.client.Subscriber method)

W

 	
 	Worker (class in rele.worker)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/rele_logo.png
€allo

nav.xhtml

 Table of Contents

 		
 Welcome to Relé’s documentation!

 		
 First Steps

 		
 Configuration

 		
 Publishing

 		
 Subscribing

 		
 Message attributes

 		
 Consuming

 		
 Django Integration

 		
 Publishing

 		
 Subscribing

 		
 Consuming

 		
 Flask Integration

 		
 Setup

 		
 Subscribing

 		
 Filtering Messages

 		
 filter_by parameter

 		
 backend_filter_by parameter

 		
 Global Filter

 		
 Pub/Sub Emulator

 		
 Unrecoverable Middleware

 		
 Usage

 		
 Settings

 		
 RELE

 		
 GC_PROJECT_ID

 		
 GC_CREDENTIALS_PATH

 		
 MIDDLEWARE

 		
 SUB_PREFIX

 		
 APP_NAME

 		
 ENCODER_PATH

 		
 ACK_DEADLINE

 		
 PUBLISHER_BLOCKING

 		
 PUBLISHER_TIMEOUT

 		
 THREADS_PER_SUBSCRIPTION

 		
 FILTER_SUBS_BY

 		
 DEFAULT_RETRY_POLICY

 		
 GC_STORAGE_REGION

 		
 API Reference

 		
 Clients

 		
 Publish

 		
 Subscription

 		
 Worker

 		
 Middleware

 		
 Base Middleware

 		
 Logging Middleware

 		
 Django Middleware

 		
 Changelog

 		
 1.13.0 (2023-09-04)

 		
 1.12.0 (2023-07-17)

 		
 1.11.0 (2023-05-09)

 		
 1.10.0 (2023-05-02)

 		
 1.9.0 (2023-05-02)

 		
 1.8.0 (2023-04-28)

 		
 1.7.0 (2022-11-15)

 		
 1.6.0 (2022-08-03)

 		
 1.5.0 (2022-04-20)

 		
 1.4.1 (2022-04-19)

 		
 1.4.0 (2022-04-13)

 		
 1.3.0 (2022-04-04)

 		
 1.2.0 (2021-12-10)

 		
 1.1.1 (2021-6-28)

 		
 1.1.0 (2021-3-10)

 		
 1.0.0 (2020-9-25)

 		
 0.14.0 (2020-8-5)

 		
 0.13.0 (2020-7-9)

 		
 0.13.dev0 (2020-6-16)

 		
 0.12.0 (2020-6-12)

 		
 0.11.0 (2020-6-4)

 		
 0.10.0 (2020-2-4)

 		
 0.9.1 (2020-1-2)

 		
 0.9.0 (2019-12-20)

 		
 0.8.1 (2019-11-25)

 		
 0.8.0 (2019-11-22)

 		
 0.7.0 (2019-10-21)

 		
 0.6.0 (2019-09-21)

 		
 0.5.0 (2019-08-08)

 		
 0.4.1 (2019-06-18)

 		
 0.4.0 (2019-06-17)

 		
 0.3.1 (2019-06-04)

 		
 0.3.0 (2019-05-14)

 		
 0.2.0 (2019-05-09)

_static/up.png

_static/up-pressed.png

